Uniqueness Theorems in Inverse Spectral Theory for One-dimensional Schrödinger Operators
نویسنده
چکیده
New unique characterization results for the potential V (x) in connection with Schrödinger operators on R and on the half-line [0,∞) are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary spectral types and a new uniqueness result for Schrödinger operators with confining potentials on the entire real line.
منابع مشابه
Inverse uniqueness results for Schrödinger operators using de Branges theory
We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.
متن کاملOn inverse problem for singular Sturm-Liouville operator with discontinuity conditions
In this study, properties of spectral characteristic are investigated for singular Sturm-Liouville operators in the case where an eigen parameter not only appears in the differential equation but is also linearly contained in the jump conditions. Also Weyl function for considering operator has been defined and the theorems which related to uniqueness of solution of inverse proble...
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملSchrödinger Operators and De Branges Spaces
We present an approach to de Branges’s theory of Hilbert spaces of entire functions that emphasizes the connections to the spectral theory of differential operators. The theory is used to discuss the spectral representation of one-dimensional Schrödinger operators and to solve the inverse spectral problem.
متن کاملTrace Formulae and Inverse Spectral Theory for Schrödinger Operators
We extend the well-known trace formula for Hill's equation to general one-dimensional Schrodinger operators. The new function <J , which we introduce, is used to study absolutely continuous spectrum and inverse problems. In this note we will consider one-dimensional Schrodinger operators d2 (IS) H = -j-1 + V(x) onL2(R;dx)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995